Data Compression Transformations for
Dynamically Allocated Data Structures *

Youtao Zhang and Rajiv Gupta

Dept. of Computer Science, The University of Arizona, Tucson, Arizona 85721

Abstract. We introduce a class of transformations which modify the
representation of dynamic data structures used in programs with the
objective of compressing their sizes. We have developed the common-
prefiz and narrow-data transformations that respectively compress a 32
bit address pointer and a 32 bit integer field into 15 bit entities. A pair
of fields which have been compressed by the above compression trans-
formations are packed together into a single 32 bit word. The above
transformations are designed to apply to data structures that are par-
tially compressible, that is, they compress portions of data structures
to which transformations apply and provide a mechanism to handle the
data that is not compressible. The accesses to compressed data are ef-
ficiently implemented by designing data compression extensions (DCX)
to the processor’s instruction set. We have observed average reductions
in heap allocated storage of 25% and average reductions in execution
time and power consumption of 30%. If DCX support is not provided
the reductions in execution times fall from 30% to 12.5%.

1 Introduction

With the proliferation of limited memory computing devices, optimizations that
reduce memory requirements are increasing in importance. We introduce a class
of transformations which modify the representation of dynamically allocated
data structures used in pointer intensive programs with the objective of com-
pressing their sizes. The fields of a node in a dynamic data structure typically
consist of both pointer and non-pointer data. Therefore we have developed the
common-prefix and narrow-data transformations that respectively compress a
32 bit address pointer and a 32 bit integer field into 15 bit entities. A pair of
fields which have been compressed can be packed into a single 32 bit word.
As a consequence of compression, the memory footprint of the data structures
is significantly reduced leading to significant savings in heap allocated storage
requirements which is quite important for memory intensive applications. The
reduction in memory footprint can also lead to significantly reduced execution
times due to a reduction in data cache misses that occur in the transformed
program.

* Supported by DARPA PAC/C Award. F29601-00-1-0183 and NSF grants CCR-
0105355, CCR-0096122, ETA-9806525, and EIA-0080123 to the Univ. of Arizona.

www.manaraa.com

An important feature of our transformations is that they have been designed
to apply to data structures that are partially compressible. In other words, they
compress portions of data structures to which transformations apply and provide
a mechanism to handle the data that is not compressible. Initially data storage
for a compressed data structure is allocated assuming that it is fully compress-
ible. However, at runtime, when uncompressible data is encountered, additional
storage is allocated to handle such data. Our experience with applications from
Olden test suite demonstrates that this is a highly important feature because
all the data structures that we examined in our experimentation were highly
compressible, but none were fully compressible.

For efficiently accessing data in compressed form we propose data compres-
sion extensions (DCX) to a RISC-style ISA which consist of six simple instruc-
tions. These instructions perform two types of operations. First since we must
handle partially compressible data structures, whenever a field that has been
compressed is updated, we must check to see if the new value to be stored in that
field is indeed compressible. Second when we need to make use of a compressed
value in a computation, we must perform an eztract and expand operation to
obtain the original 32 bit representation of the value.

We have implemented our techniques and evaluated them. The DCX in-
structions have been incorporated into the MIPS like instruction set used by the
simplescalar simulator. The compression transformations have been incorpo-
rated in the gcc compiler. We have also addressed other important implemen-
tation issues including the selection of fields for compression and packing. Our
experiments with six benchmarks from the Olden test suite demonstrate an av-
erage space savings of 25% in heap allocated storage and average reductions of
30% in execution times and power consumption. The net reduction in execution
times is attributable to reduced miss rates for L1 data cache and L2 unified
cache and the availability of DCX instructions.

2 Data Compression Transformations

As mentioned earlier, we have developed two compression transformations: one to
handle pointer data and the other to handle narrow width non-pointer data. We
illustrate the transformations by using an example of the dynamically allocated
link list data structure shown below — the next and value fields are compressed to
illustrate the compression of both pointer and non-pointer data. The compressed
fields are packed together to form a single 32 bit field value_next.

Original Structure: Transformed Structure:
struct list_node { struct list_node {
..; e
int value; int value_next;
struct list_node *next; 1 *6;
b

Common-Prefix transformation for pointer data. The pointer contained in the
next field of the link list can be compressed under certain conditions. In partic-
ular, consider the addresses corresponding to an instance of list_node (addrl)

www.manaraa.com

and the next field in that node (addr2). If the two addresses share a common
17 bit prefix because they are located fairly close in memory, we classify the
next pointer as compressible. In this case we eliminate the common prefix from
address addr2 which is stored in the next pointer field. The lower order 15 bits
from addr?2 represent the representation of the pointer in compressed form. The
32 bit representation of a next field can be reconstructed when required by ob-
taining the prefix from the pointer to the list_node instance to which the next
field belongs.

Narrow data transformation for non-pointer data. Now let us consider the com-
pression of the narrow width integer value in the walue field. If the 18 higher
order bits of an array element are identical, that is, they are either all 0’s or
all 1’s, it is classified as compressible. The 17 higher order bits are discarded
and leaving a 15 bit entity. Since the 17 bits discarded are identical to the most
significant order bit of the 15 bit entity, the 32 bit representation can be easily
derived when needed by replicating the most significant bit.

Packing together compressed fields. The value and next fields of a node belonging
to an instance of list_-node can be packed together into a single 32 bit word
as they are simply 15 bit entities in their compressed form. Together they are
stored in value_next field of the transformed structure. The 32 bits of value_next
are divided into two half words. Each compressed field is stored in the lower
order 15 bits of the corresponding half word. According to the above strategy,
bits 15 and 31 are not used by the compressed fields. Next we describe the
handling of uncompressible data in partially compressible data structures. The
implementation of partially compressible data structures require an additional
bit for encoding information. This is why we compress fields down to 15 bit
entities and not into 16 bit entities.

Partial compressibility. Our basic approach is to allocate only enough storage
to accommodate a compressed node when a new node in the data structure is
created. Later, as the pointer fields are assigned values, we check to see if the
fields are compressible. If they are, they can be accommodated in the allocated
space; otherwise additional storage is allocated to hold the fields in uncompressed
form. The previously allocated location is now used to hold a pointer to this
additional storage. Therefore for accessing uncompressible fields we have to go
through an extra step of indirection.

If the uncompressible data stored in the fields is modified, it is possible that
the fields may now become compressible. However, we do not carry out such
checks and instead we leave the fields in such cases in uncompressed form. This
is because exploitation of such compression opportunities can lead to repeated
allocation and deallocation of extra locations if data values repeatedly keep
oscillating between compressible and uncompressible kind. To avoid repeated
allocation and deallocation of extra locations we simplify our approach so that
once a field is assigned an uncompressible value, from then onwards, the data in
the field is always maintained in uncompressed form.

www.manaraa.com

We use the most significant bit (bit 31) in the word to indicate whether or
not the data stored in the word is compressed or not. This is possible because in
the MIPS base system that we use, the most significant bit for all heap addresses
is always 0. It contains a 0 to indicate that the word contains compressed values.
If it contains a 1, it means that one or both of values were not compressible and
instead the word contains a pointer to an extra pair of dynamically allocated
locations which contain the values of the two fields in uncompressed form. While
bit 31 is used to encode extra information, bit 15 is never used for any purpose.

Original: Set "value” field and Create "next" link

addr0 addr0

R RN
value value (= v1) addrl
next —— nil next ——1

Transformed(case 1) : both "next" and "value" fields are compressible

addr0 addr0
t

o Tw]| —

nil V1 addrll

—

Transformed(case 3) : "value" is not compressible
addr0 addr0

P R
w1
Vi
e

n
addrll

Fig. 1. Dealing with uncompressible data.

In Fig. 1 we illustrate the above method using an example in which an in-
stance of list_node is allocated and then the value and next fields are set up
one at a time. As we can see first storage is allocated to accommodate the two
fields in compressed form. As soon as the first uncompressible field is encoun-
tered additional storage is allocated to hold the two fields in uncompressed form.
Under this scheme there are three possibilities which are illustrated in Fig. 1.
In the first case both fields are found to be compressible and therefore no extra
locations are allocated. In the second case the value field, which is accessed first,
is compressible but the next field is not. Thus, initially value field is stored in
compressed form but later when next field is found to be compressible, extra
locations are allocated and both fields are store in uncompressed form. Finally
in the third case the value field is not compressible and therefore extra locations
are allocated right away and none of the two fields are ever stored in compressed
form.

www.manaraa.com

3 Instruction Set Support

Compression reduces the amount of heap allocated storage used by the program
which typically improves the data cache behavior. Also if both the fields need
to be read in tandem, a single load is enough to read both the fields. However,
the manipulation of the fields also creates additional overhead. To minimize
this overhead we have design new RISC-style instructions. We have designed
three simple instructions each for pointer and non-pointer data respectively that
efficiently implement common-prefix and narrow-data transformations. The se-
mantics of the these instructions are summarized in Fig. 2. These instructions
are RISC-style instructions with complexity comparable to existing branch and
integer ALU instructions. Let us discuss these instructions in greater detail.

Checking compressibility. Since we would like to handle partially compressible
data, before we actually compress a data item at runtime, we must first check
whether the data item is compressible. Therefore the first instruction type we
introduce allows efficient checking of data compressibility. We have provided the
two new instructions that are described below. The first checks the compress-
ibility of pointer data and the second does the same for non-pointer data.

bneh17 R1, R2, L1 — is used to check if the higher order 17 bits of R1 and
R2 are the same. If they are the same, the execution continues and the field
held in R2 can be compressed; otherwise the branch is taken to a point
where we handle the situation, by allocating additional storage, in which
the address in R2 is not compressible. The instruction also handles the case
where R2 contains a nil pointer which is represented by the value 0 both in
compressed and uncompressed forms. Since 0 represents a nil pointer, the
lower order 15 bits of an allocated address should never be all zeroes - to
correctly handle this situation we have modified our malloc routine so that
it never allocates storage locations with such addresses.

bneh18 R1, L1 is used to check if the higher order 18 bits of R1 are identical
(i.e., all 0’s or all 1’s). If they are the same, the execution continues and the
value held in R1 is compressed; otherwise the value in R1 is not compress-
ible and the branch is taken to a point where we place code to handle this
situation by allocating additional storage.

Extract-and-expand. If a pointer is stored in compressed form, before it can be
derefrenced, we must first reconstruct its 32-bit representation. We do the same
for compressed non-pointer data before its use. Therefore the second instruction
type that we introduce carries out extract-and-expand operations. There are four
new instructions that we describe below. The first two instructions are used to
extract-and-expand compressed pointer fields from lower and upper halves of a
32-bit word respectively. The next two instructions do the same for non-poniter
data.

xtrhl R1, R2, R3 - extracts the compressed pointer field stored in lower or-
der bits (0 through 14) of register R3 and appends it to the common-prefix

www.manaraa.com

contained in higher order bits (15 through 31) of R2 to construct the uncom-
pressed pointer which is then made available in R1. We also handle the case
when R3 contains a nil pointer. If the compressed field is a nil pointer, R1 is

set to nil.

BNEH17 R1,R2,L1
if (R2!=0)&& (R1, s '=R2; ;o)

BNEH18 R1,L1
if (Rl,, ,, '=0) && (R, ,, '=Ox3ff)

goto L1 goto L1
31 15 14 .. 0
S
oI
XTRHL R1,R2,R3 XTRL R1,R2
if (R3,, o!=0) /*Non-NULL case */ if (R2,, ==1)
R1=R2,, ;s R3,, , R1 = Ox1ffff R2,, ,
else else
R1=0
31..15 14..0

XTRHH R1,R2,R3 XTRH R1,R2
if (R35 46 '=0) /* Non-NULL case */ if (R25 ==1)
R1=R2y 15 R34 16 R1 = OxIffff R25 16
else else
R1=0 R1=R2y 46

31..15 14..0

3130 29..16 15 14..0

XXXKXXXKXKXXXXKX

Fig. 2. DCX instructions.

xtrhh R1, R2, R3 - extracts the compressed pointer field stored in the higher

order bits (16 through 30) of register R3 and appends it to the common-
prefix contained in higher order bits (15 through 31) of R2 to construct the
uncompressed pointer which is then made available in R1. If the compressed
field is a nil pointer, R1 is set to nil.

The instructions xtrhl and xtrhh can also be used to compress two fields
together. However, they are not essential for this purpose because typically
there are existing instructions which can perform this operation. In the MIPS
like instruction set we used in this work this was indeed the case.

xtrl R1, R2 - extracts the field stored in lower half of the R2, expands it, and

then stores the resulting 32 bit value in R1.

xtrh R1, R2 —extracts the field stored in the higher order bits of R2, exapands

it, and then stores the resulting 32 bit value in R1.

www.manaraa.com

Next we give a simple example to illustrate the use of the above instructions.
Let us assume that an integer field ¢ — wvalue and a pointer field t — next
are compressed together into a single field ¢ — value_next. In Fig. 3a we show
how compressibility checks are used prior to appropriately storing newvalue
and newnext values in to the compressed fields. In Fig. 3b we illustrate the
extract and expand instructions by extracting the compressed values stored in
t — value_next.

; $16 : &t— > wvalue_next

; $18 : newvalue

; $19 : newnext

; branch if newvalue is not compressible
bnehl8 $18, $L1

; branch if newnext is not compressible
bnehl7 $16, $19, $L1

; store compressed data in t— > walue_next

ori $19, $19, Ox7fff
swr $18, 0(3%16)
swr $19, 2($16)
j $L2
$L1: ; allocate extra locations and store pointer

; to extra locations in t— > value_next
; store uncompressed data in extra locations

$L2:
(a) Illustration of compressibility checks.

; $16: &(t— > value_next)
; $17: uncompressed integer t— > value
; $18: uncompressed pointer t— > mext
; load contents of t— > value_next
1w $3,0($16)
; branch if $3 is a pointer to extra locations
bltz $3, $L1
; extract and expand t— > value
xtrl $17, $3
; extract and expand t— > next
xtrhl$18, $16, $3
j o $L2

$L1: ; load values from extra locations

$L2:

(b) Illustration of extract and expand instructioms.

Fig. 3. An example.

www.manharaa.com

4 Compiler Support

Object layout transformations can only be applied to a C program if the user
does not access the fields through explicit address arithmetic and also does not
typecast the objects of the transformed type into objects of another type. Like
prior work by Truong et al. [14] on field reorganization and instance interleaving,
we assume that the programmer has given us the go ahead to freely transform
the data structures when it is apprpriate to do so. From this step onwards the
rest of process is carried out automatically by the compiler. In the remainder
of this section we describe key aspects of the the compiler support required for
effective data compression.

Identifying fields for compression and packing. Our observation is that most
pointer fields can be compressed quite effectively using the common-prefix trans-
formation. Integer fields to which narrow-data transformation can be applied can
be identified either based upon knowledge about the application or using value
profiling. The most critical issue is that of pairing compressed fields for packing
into a single word. For this purpose we must first categorize the fields as hot
fields and cold fields. It is useful to pack two hot fields together if they are typ-
ically accessed in tandem. This is because in this situation a single load can be
shared while reading the two values. It is also useful to compress any two cold
fields even if they are not accessed in tandem. This is because even though they
cannot share the same load, they are not accessed frequently. In all other situa-
tions it is not as useful to pack data together because even though space savings
will be obtained, execution time will be adversely affected. We used basic block
frequency counts to identify pairs of fields belonging to the above categories and
then applied compression transformations to them.

ccmalloc vs malloc. We make use of ccmalloc [6], a modified version of malloc,
for carrying out storage allocation. This form of storage allocation was developed
by Chilimbi et al. [6] and as described earlier it improves the locality of dynamic
data structures by allocating the linked nodes of the data structure as close to
each other as possible in the heap. As a consequence, this technique increases the
likelihood that the pointer fields in a given node will be compressible. Therefore
it makes sense to use ccmalloc in order to exploit the synergy between ccmalloc
and data compression.

Register pressure. Another issue that we consider in our implementation is that
of potential increase in register pressure. The code executed when the pointer
fields are found to be uncompressible is substantial and therefore it can increase
register pressure significantly causing a loss in performance. However, we know
that this code is executed very infrequently since very few fields are uncompress-
ible. Therefore, in this piece of code we first free registers by saving values and
then after executing the code the values are restored in registers. In other words,
the increase in register pressure does not have an adverse effect on frequently
executed code.

www.manaraa.com

Instruction cache behavior and code size. The additional instructions generated
for implementing compression can lead to an increase in code size which can
further impact the instruction cache behavior. It is important to note however
that a large part of the code size increase is due to the handling of the infrequent
case in which the data is found not to be compressible. In order to minimize the
impact on the code size we can share the code for handling the above infrequent
case across all the updates corresponding to a given data field. To minimize the
impact of the performance on the instruction cache, we can employ a code layout
strategy which places the above infrequently executed code elsewhere and create
branches to it and back so that the instruction cache behavior for more frequently
executed code is minimally affected. Our implementation currently does not
support the above techniques and therefore we observed code size increase and
degraded instruction cache behavior in our experiments.

Code generation. The remainder of the code generation details for implementing
data compression are in most part quite straightforward. Once the fields have
been selected for compression and packing together, whenever a use of a value
of any of the fields is encountered, the load is followed by an extract-and ex-
pand instruction. If the value of any of compressed fields is to be updated, the
compressibility check is performed before storing the value. When two hot fields
that are packed together are to be read/updated, initially we generate separate
loads/stores for them. Later in a separate pass we eliminate the later of the two
loads/stores whenever possible.

5 Performance Evaluation

Ezperimental setup. We have implemented the techniques described to evaluate
their performance. The transformations have been implemented as part of the
gcc compiler and the DCX instructions have been incorporated in the MIPS like
instruction set of the superscalar processor simulated by simplescalar [3]. The
evaluation is based upon six benchmarks taken from the Olden test suite [5] (see
Fig. 4a) which contains pointer intensive programs that make extensive use of
dynamically allocated data structures.

In order to study the impact of memory performance we varied the input sizes
of the programs and also varied the L2 cache latency. The cache organization of
simplescalar is shown in Fig. 4b. There are first level separate instruction and
data caches (I-cache and D-cache). The lower level cache is a unified-cache for
instructions and data. The L1 cache used was a 16K direct mapped cache with
9 cycle miss latency while the unified L2 cache is 256K with 100/200/400 cycle
miss latencies. Our experiments are for an out-of-order issue superscalar with
issue width of 4 instructions and the Bimod branch predictor.

Impact on storage needs. The transformations applied and their impact on the
node sizes is shown in Fig. 5a. In the first four benchmarks (treeadd, bisort,
tsp, and perimeter), node sizes are reduced by storing pairs of compressed

pointers in a single word. In the health benchmark a pair of small values are

www.manaraa.com

||Pr0gram |Application ||

treeadd |Recursive sum of val | [[Parameter [Value |
ues in a B-tree Issue Width 4 issue, out of order
bisort Bitonic Sorting I cache 16K direct mapped
tsp Traveling salesman||||I cache miss latency |9 cycles
problem L1 data cache 16K direct mapped
perimeter|Perimeters of regions||||L1 data cache miss la-|9 cycles
in images tency
health Columbian health care||||L2 unified cache 256K 2-way
simulation Memory latency Configuration 1/2/3 =
mst Minimum Spanning||||(L2 cache miss la-|100/200/400 cycles
tree of a graph tency)
(a) Benchmarks. (b) Machine configurations.

Fig. 4. Experimental setup.

compressed together and stored in a single word. Finally, in the mst benchmark
a compressed pointer and a compressed small value are stored together in a
single word. The changes in node sizes range from 25% to 33% for five of the
benchmarks. Only in case of tsp is the reduction smaller — just over 10%.

We measured the runtime savings in heap allocated storage for small and
large program inputs. The results are given in Fig. 5b. The average savings
are nearly 25% while they range from 10% to 33% across different benchmarks.
Even more importantly these savings represent significant levels of heap storage
— typically in megabytes. For example, the 33% storage savings for treeadd
represents 4.2 Mbytes and 17 Mbytes of heap storage savings for small and large
program inputs respectively. It should also be noted that such savings cannot
be obtained by other locality improving techniques described earlier [14, 15, 6].

From the results in Fig. 5b we make another very important observation. The
extra locations allocated when non-compressible data is encountered is non-zero
for all of the benchmarks. In other words we observe that for none of the data
structures to which our compression transformations were applied, were all of
the instances of the data encountered at runtime actually compressible. A small
amount of additional locations were allocated to hold a small number of uncom-
pressible pointers and small values in each case. Therefore the generality of our
transformation which allows handling of partially compressible data structures
is extremely important. If we had restricted the application of our technique to
data fields that are always guaranteed to be compressible, we could not have
achieved any compression and therefore no space savings would have resulted.

We also measured the increase in code size caused by our transformations
(see Fig. 5¢). The increase in code size prior to linking is significant while after
linking the increase is very small since the user code is small part of the binaries.
However, the reason for significant increase in user code is because each time a
compressed field is updated, our current implementation generates a new copy
of the additional code for handling the case where the data being stored may

www.manaraa.com

not be compressible. In practice it is possible to share this code across multiple
updates. Once such sharing has been implemented, we expect that the increase
in the size of user code will also be quite small.

Program | Before| After
Linking|Linking
treeadd 16.4%| 0.04%
bisort 40.0%| 0.01%
tsp 4.9%| 0.18%
perimeter| 21.3%| 1.97%
health 33.7%| 0.23%
mst 10.7%| 0.06%
average 21.1%| 0.41%

Program |Transformation Applied |Size Change
(bytes)

treeadd |Com.Prefix/Com.Prefix |from 28 to 20
bisort Com.Prefix/Com.Prefix |from 12 to 8
tsp Com.Prefix/Com.Prefix |from 36 to 32
perimeter|Com.Prefix/Com.Prefix |from 12 to 8
health |NarrowData/NarrowData |from 16 to 12
mst Com.Prefix/NarrowData |from 16 to 12

(a) Reduction in node size. L
(c) Code size increase.

Storage (bytes)
Small Input Large Input
Program | Original] Total (Extra)[Savings || Original] Total (Extra)[Savings

treeadd [12582900(8402040 (13440)| 33.2 % ||50331636|33605684 (51260)| 33.2 %

bisort 786420| 549880 (25600)| 30.1 % || 3145716|2301304 (204160)| 26.8 %
tsp 5242840| 4200352 (6080)| 19.9 % |[20971480|16800224 (23040)| 19.9 %
perimeter| 4564364| 3265380 (5120)| 28.5 % ||20332620|14546980 (23680)| 28.5 %
health 566872 510272 (320)| 10.0 % || 1128240 1015124 (320)| 10.0 %
mst 3414020| 2367812 (320)| 30.6 % |[54550532| 37781828 (320)| 30.7 %
average 254 % 24.9 %

(b) Reduction in heap storage for small and large inputs.

Fig. 5. Impact on storage needs.

Impact on execution times. Based upon the cycle counts provided by the sim-
plescalar simulator we studied the changes in execution times resulting from
compression transformations. The impact of L2 latency on execution times was
also studied. The results in Fig. 6 are for small inputs. For L2 cache latency
of 100 cycles, the reduction in execution times in comparison to the original
programs which use malloc range from 3% to 64% while on an average the re-
duction in execution time is around 30%. The reductions for higher latencies are
also similar.

We also compared our execution times with versions of the programs that use
ccmalloc. Qur approach outperforms ccmalloc in five out of the six benchmarks
(our version of mst runs slightly slower than the ccmalloc version). On an
average we outperform ccmalloc by nearly 10%. Our approach outperforms
ccmalloc because once the node sizes are reduced, typically greater number of
nodes fit into a single cache line leading to a low number of cache misses. We also
pay additional runtime overhead in form of extra instructions needed to carry
out compression and extraction of compressed values. However, this additional

www.manaraa.com

execution time is more than offset by the time savings resulting from reduced
cache misses; thus leading to overall reduction in execution time. On an average,
compression reduces the execution times by 10%, 15%, and 20% over ccmalloc
for L2 cache latencies of 100, 200, and 400 cycles respectively. Therefore we
observe that as the latency of L2 cache is increased, compression outperforms
ccmalloc by a greater extent. In summary our approach provides large storage
savings and significant execution time reductions over ccmalloc.

Comp./Orig.*100 (Latency=100 cycles)
Comp./Orig.*100 (Latency=200 cycles)
Comp./Orig.*100 (Latency=400 cycles)
120 - — Comp./ccmalloc*100 (Latency=100 cycles)
Comp./ccmalloc*100 (Latency=200 cycles)
Comp./ccmalloc*100 (Latency=400 cycles)

100 F———————————— - ———————————[p-————-

80 F—fF——————— Enl = -— ;-

60 |~ —H - . - ——| -

percentage comparison
|
T

40 H - - g - -—| ;-

0

g ©? @ ™ wet R (oo

)
“eea ge‘\

Fig. 6. Reduction in execution time due to data compression.

We would also like to point out that the use of special DCX instructions was
critical in reducing the overhead of compression and extraction. Without DCX
instructions the programs would have ran significantly slower. We ran versions of
programs which did not use DCX instructions for L2 cache latency of 100 cycles.
The average reduction in execution times, in comparison to original programs,
dropped from 30% to 12.5%. Instead of an average reduction in execution times
of 10% in comparison to ccmalloc versions of the program we observed an
average increase of 9% in execution times.

Impact on power consumption. We also compared the power consumption for the
compression based programs with that of the original programs and ccmalloc
based programs (see Fig. 7). These measurements are based upon the Wattch
[1] system which is built on top of the simplescalar simulator. These results
track the execution time results quite closely. The average reduction in power
consumption over the original programs is around 30% for the small input. The
reductions in power dissipation that compression provides over ccmalloc for the
different cache latencies is also given. As we can see, on an average, compression
reduces the power dissipation by 5%, 10%, and 15% over ccmalloc for .2 cache
latencies of 100, 200, and 400 cycles respectively.

www.manaraa.com

Comp./Orig.*100 (Latency=100 cycles)
Comp./Orig.*100 (Latency=200 cycles)
Comp./Orig.*100 (Latency=400 cycles)
120 - — Comp./ccmalloc*100 (Latency=100 cycles)
Comp./ccmalloc*100 (Latency=200 cycles)
Comp./ccmalloc*100 (Latency=400 cycles)

percentage comparison

“eeadd geo™ ey)

\ \\Y
ve‘\‘“e\e e

“\s\ a\‘e‘ 202

Fig. 7. Impact on in power consumption.

Impact on cache performance. Finally in Fig. 8 we present the impact of com-
pression on cache behavior, including I-cache, D-cache and unified L2 cache
behaviors. As expected, the I-cache performance is degraded due to increase
in code size caused by our current implementation of compression. However,
the performances of D-cache and unified cache are significantly improved. This
improvement in data cache performance is a direct consequence of compression.

|I-cache:Comp./Orig.*100
|I-cache:Comp./ccmalloc*100
D-cache:Comp./Orig.*100
D-cache:Comp./ccmalloc*100
U-cache:Comp./Orig.*100
U-cache:Comp./ccmalloc*100

percentage comparison

“eeac\d g 0 e e

o

Fig. 8. Impact on cache misses.

www.manharaa.com

6 Related Work

Recently there has been a lot of interest in exploiting narrow width values to
improve program performance [2,12,13]. However, our work focusses on pointer
intensive applications for which it is important to also handle pointer data. A
great deal of research has been conducted on development of locality improving
transformations for dynamically allocated data structures. These transforma-
tions alter object layout and placement to improve cache performance [14, 6, 15].
However, none of these transformations result in space savings.

Existing compression transformations [10, 7] rely upon compile time analysis
to prove that certain data items do not require a complete word of memory. They
are applicable only when the compiler can determine that the data being com-
pressed is fully compressible and they only apply to narrow width non-pointer
data. In contrast, our compression transformations apply to partially compress-
ible data and, in addition to handling narrow width non-pointer data, they also
apply to pointer data. Our approach is not only more general but it is also sim-
pler in one respect. We do not require compile-time analysis to prove that the
data is always compressible. Instead simple compile-time heuristics are sufficient
to determine that the data is likely to be compressible.

ISA extensions have been developed to efficiently process narrow width data
including Intel’s MMX [9] and Motorola’s AltiVec [11]. Compiler techniques are
also being developed to exploit such instruction sets [8]. However, the instruc-
tions we require are quite different from MMX instructions because we must
handle partially compressible data structures and we must also handle pointer
data.

7 Conclusions

In conclusion we have introduced a new class of transformations that apply
data compression techniques to compact the sizes of dynamically allocated data
structures. These transformations result in large space savings and also result in
significant reductions in program execution times and power dissipation due to
improved memory performance.

An attractive property of these transformations is that they are applicable
to partially compressible data structures. This is extremely important because
according to our experiments, while the data structures in all of the benchmarks
we studied are very highly compressible, they contain small amounts of uncom-
pressible data. Even for programs with fully compressible data structures our
approach has one advantage. The application of compression transformations can
be driven by simple value profiling techniques [4]. There is no need for complex
compile-time analyses for identifying fully compressible fields in data structures.

Our approach is applicable to a more general class of programs than exist-
ing compression techniques: we can compress pointers as well as non-pointer
data; and we can compress partially compressible data structures. Finally we
have designed the DCX ISA extensions to enable efficient manipulation of com-
pressed data. The same task cannot be carried using MMX type instructions.
Our main contribution is that data compression techniques can now be used to

www.manaraa.com

improve performance of general purpose programs and therefore this work takes
the utility of compression beyond the realm of multimedia applications.

References

1. D. Brooks, V. Tiwari, and D. Martonosi, “Wattch: A Framework for Architecture-
Level Power Analysis and Optimizations,” 27th International Symposium on Com-
puter Architecture (ISCA), pages 83 94, May 2000.

2. D. Brooks and D. Martonosi, “Dynamically Exploiting Narrow Width Operands
to Improve Processor Power and Performance,” 5th International Symposium on
High-Performance Computer Architecture (HPCA), pages 13 22, Jan. 1999.

3. D. Burger and T.M. Austin, “The Simplescalar Tool Set, Version 2.0,” Computer
Architecture News, pages 13-25, June 1997.

4. M. Burrows, U. Erlingson, S-T.A. Leung, M.T. Vandevoorde, C.A. Waldspurger,
K. Walker, and W.E. Weihl, “Efficient and Flexible Value Sampling,” The Ninth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 160 167, Cambridge, MA, November 2000.

5. M. Carlisle, “Olden: Parallelizing Progrms with Dynamic Data Structures on
Distributed-Memory Machines,” PhD Thesis, Princeton Univ., Dept. of Comp. Sci-
ence, June 1996.

6. T.M. Chilimbi, M.D. Hill, and J.R. Larus, “Cache-Conscious Structure Layout,”
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 1-12, Atlanta, Georgia, May 1999.

7. J. Davidson and S. Jinturkar, “Memory access coalescing : a technique for elimi-
nating redundant memory accesses,” ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 186-195, 1994.

8. S. Larsen and S. Amarasinghe, “Exploiting Superword Level Parallelism with Multi-
media Instruction Sets,” ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 145-156, Vancouver B.C.; Canada, June 2000.

9. A. Peleg and U. Weiser, MMX Technology Eztension to Intel Architecture. 16(4):42-
50, August 1996.

10. M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth Analysis with Application
to Silicon Compilation,” ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 108 120, Vancouver B.C., Canada, June 2000.

11. J. Tyler, J. Lent, A. Mather, and H.V. Nguyen, “AltiVec(tm): Bringing Vector
Technology to the PowerPC(tm) Processor Family,” Phoenix, AZ, February 1999.

12. Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and Value-Centric
Data Cache Design,” The Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 150-159,
Cambridge, MA, November 2000.

13. J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in Data Caches,”
The 38nd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 258 265, Monterey, CA, December 2000.

14. D.N. Truong, F. Bodin, and A. Seznec, “Improving Cache Behavior of Dynamically
Allocated Data Structures,” International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 322 329, Paris, France, 1998.

15. B. Calder, C. Krintz, S. John, and T. Austin, “Cache-Conscious Data Placement,”
8th International Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 139 149, San Jose, California, October 1998.

www.manaraa.com

