
www.manaraa.com

Data Compression Transformations forDynami
ally Allo
ated Data Stru
tures ?Youtao Zhang and Rajiv GuptaDept. of Computer S
ien
e, The University of Arizona, Tu
son, Arizona 85721Abstra
t. We introdu
e a
lass of transformations whi
h modify therepresentation of dynami
 data stru
tures used in programs with theobje
tive of
ompressing their sizes. We have developed the
ommon-pre�x and narrow-data transformations that respe
tively
ompress a 32bit address pointer and a 32 bit integer �eld into 15 bit entities. A pairof �elds whi
h have been
ompressed by the above
ompression trans-formations are pa
ked together into a single 32 bit word. The abovetransformations are designed to apply to data stru
tures that are par-tially
ompressible, that is, they
ompress portions of data stru
turesto whi
h transformations apply and provide a me
hanism to handle thedata that is not
ompressible. The a

esses to
ompressed data are ef-�
iently implemented by designing data
ompression extensions (DCX)to the pro
essor's instru
tion set. We have observed average redu
tionsin heap allo
ated storage of 25% and average redu
tions in exe
utiontime and power
onsumption of 30%. If DCX support is not providedthe redu
tions in exe
ution times fall from 30% to 12.5%.1 Introdu
tionWith the proliferation of limited memory
omputing devi
es, optimizations thatredu
e memory requirements are in
reasing in importan
e. We introdu
e a
lassof transformations whi
h modify the representation of dynami
ally allo
ateddata stru
tures used in pointer intensive programs with the obje
tive of
om-pressing their sizes. The �elds of a node in a dynami
 data stru
ture typi
ally
onsist of both pointer and non-pointer data. Therefore we have developed the
ommon-pre�x and narrow-data transformations that respe
tively
ompress a32 bit address pointer and a 32 bit integer �eld into 15 bit entities. A pair of�elds whi
h have been
ompressed
an be pa
ked into a single 32 bit word.As a
onsequen
e of
ompression, the memory footprint of the data stru
turesis signi�
antly redu
ed leading to signi�
ant savings in heap allo
ated storagerequirements whi
h is quite important for memory intensive appli
ations. Theredu
tion in memory footprint
an also lead to signi�
antly redu
ed exe
utiontimes due to a redu
tion in data
a
he misses that o

ur in the transformedprogram.? Supported by DARPA PAC/C Award. F29601-00-1-0183 and NSF grants CCR-0105355, CCR-0096122, EIA-9806525, and EIA-0080123 to the Univ. of Arizona.

www.manaraa.com

An important feature of our transformations is that they have been designedto apply to data stru
tures that are partially
ompressible. In other words, they
ompress portions of data stru
tures to whi
h transformations apply and providea me
hanism to handle the data that is not
ompressible. Initially data storagefor a
ompressed data stru
ture is allo
ated assuming that it is fully
ompress-ible. However, at runtime, when un
ompressible data is en
ountered, additionalstorage is allo
ated to handle su
h data. Our experien
e with appli
ations fromOlden test suite demonstrates that this is a highly important feature be
auseall the data stru
tures that we examined in our experimentation were highly
ompressible, but none were fully
ompressible.For eÆ
iently a

essing data in
ompressed form we propose data
ompres-sion extensions (DCX) to a RISC-style ISA whi
h
onsist of six simple instru
-tions. These instru
tions perform two types of operations. First sin
e we musthandle partially
ompressible data stru
tures, whenever a �eld that has been
ompressed is updated, we must
he
k to see if the new value to be stored in that�eld is indeed
ompressible. Se
ond when we need to make use of a
ompressedvalue in a
omputation, we must perform an extra
t and expand operation toobtain the original 32 bit representation of the value.We have implemented our te
hniques and evaluated them. The DCX in-stru
tions have been in
orporated into the MIPS like instru
tion set used by thesimples
alar simulator. The
ompression transformations have been in
orpo-rated in the g

ompiler. We have also addressed other important implemen-tation issues in
luding the sele
tion of �elds for
ompression and pa
king. Ourexperiments with six ben
hmarks from the Olden test suite demonstrate an av-erage spa
e savings of 25% in heap allo
ated storage and average redu
tions of30% in exe
ution times and power
onsumption. The net redu
tion in exe
utiontimes is attributable to redu
ed miss rates for L1 data
a
he and L2 uni�ed
a
he and the availability of DCX instru
tions.2 Data Compression TransformationsAs mentioned earlier, we have developed two
ompression transformations: one tohandle pointer data and the other to handle narrow width non-pointer data. Weillustrate the transformations by using an example of the dynami
ally allo
atedlink list data stru
ture shown below { the next and value �elds are
ompressed toillustrate the
ompression of both pointer and non-pointer data. The
ompressed�elds are pa
ked together to form a single 32 bit �eld value next.Original Stru
ture: Transformed Stru
ture:stru
t list node f stru
t list node f� � �; � � �;int value; int value next;stru
t list node *next; g *t;g *t;Common-Pre�x transformation for pointer data. The pointer
ontained in thenext �eld of the link list
an be
ompressed under
ertain
onditions. In parti
-ular,
onsider the addresses
orresponding to an instan
e of list node (addr1)

www.manaraa.com

and the next �eld in that node (addr2). If the two addresses share a
ommon17 bit pre�x be
ause they are lo
ated fairly
lose in memory, we
lassify thenext pointer as
ompressible. In this
ase we eliminate the
ommon pre�x fromaddress addr2 whi
h is stored in the next pointer �eld. The lower order 15 bitsfrom addr2 represent the representation of the pointer in
ompressed form. The32 bit representation of a next �eld
an be re
onstru
ted when required by ob-taining the pre�x from the pointer to the list node instan
e to whi
h the next�eld belongs.Narrow data transformation for non-pointer data. Now let us
onsider the
om-pression of the narrow width integer value in the value �eld. If the 18 higherorder bits of an array element are identi
al, that is, they are either all 0's orall 1's, it is
lassi�ed as
ompressible. The 17 higher order bits are dis
ardedand leaving a 15 bit entity. Sin
e the 17 bits dis
arded are identi
al to the mostsigni�
ant order bit of the 15 bit entity, the 32 bit representation
an be easilyderived when needed by repli
ating the most signi�
ant bit.Pa
king together
ompressed �elds. The value and next �elds of a node belongingto an instan
e of list node
an be pa
ked together into a single 32 bit wordas they are simply 15 bit entities in their
ompressed form. Together they arestored in value next �eld of the transformed stru
ture. The 32 bits of value nextare divided into two half words. Ea
h
ompressed �eld is stored in the lowerorder 15 bits of the
orresponding half word. A

ording to the above strategy,bits 15 and 31 are not used by the
ompressed �elds. Next we des
ribe thehandling of un
ompressible data in partially
ompressible data stru
tures. Theimplementation of partially
ompressible data stru
tures require an additionalbit for en
oding information. This is why we
ompress �elds down to 15 bitentities and not into 16 bit entities.Partial
ompressibility. Our basi
 approa
h is to allo
ate only enough storageto a

ommodate a
ompressed node when a new node in the data stru
ture is
reated. Later, as the pointer �elds are assigned values, we
he
k to see if the�elds are
ompressible. If they are, they
an be a

ommodated in the allo
atedspa
e; otherwise additional storage is allo
ated to hold the �elds in un
ompressedform. The previously allo
ated lo
ation is now used to hold a pointer to thisadditional storage. Therefore for a

essing un
ompressible �elds we have to gothrough an extra step of indire
tion.If the un
ompressible data stored in the �elds is modi�ed, it is possible thatthe �elds may now be
ome
ompressible. However, we do not
arry out su
h
he
ks and instead we leave the �elds in su
h
ases in un
ompressed form. Thisis be
ause exploitation of su
h
ompression opportunities
an lead to repeatedallo
ation and deallo
ation of extra lo
ations if data values repeatedly keepos
illating between
ompressible and un
ompressible kind. To avoid repeatedallo
ation and deallo
ation of extra lo
ations we simplify our approa
h so thaton
e a �eld is assigned an un
ompressible value, from then onwards, the data inthe �eld is always maintained in un
ompressed form.

www.manaraa.com

We use the most signi�
ant bit (bit 31) in the word to indi
ate whether ornot the data stored in the word is
ompressed or not. This is possible be
ause inthe MIPS base system that we use, the most signi�
ant bit for all heap addressesis always 0. It
ontains a 0 to indi
ate that the word
ontains
ompressed values.If it
ontains a 1, it means that one or both of values were not
ompressible andinstead the word
ontains a pointer to an extra pair of dynami
ally allo
atedlo
ations whi
h
ontain the values of the two �elds in un
ompressed form. Whilebit 31 is used to en
ode extra information, bit 15 is never used for any purpose.
Original: Set "value" field and Create "next" link

addr0

value
next

addr0

value (= v1)
next

addr1

tt

Transformed(case 1) : both "next" and "value" fields are compressible

addr0

nv

addr0
tt

(v1)0

nil

nil

nv (v1)0

addr11
Transformed(case 2) : "value" is compressible and "next" is not

addr0

nv

addr0
tt

(v1)0

nil

nv1

v1 addr11

Transformed(case 3) : "value" is not compressible

addr0
tt

nv1

v1 addr11

addr0

nv1

v1
nilFig. 1. Dealing with un
ompressible data.In Fig. 1 we illustrate the above method using an example in whi
h an in-stan
e of list node is allo
ated and then the value and next �elds are set upone at a time. As we
an see �rst storage is allo
ated to a

ommodate the two�elds in
ompressed form. As soon as the �rst un
ompressible �eld is en
oun-tered additional storage is allo
ated to hold the two �elds in un
ompressed form.Under this s
heme there are three possibilities whi
h are illustrated in Fig. 1.In the �rst
ase both �elds are found to be
ompressible and therefore no extralo
ations are allo
ated. In the se
ond
ase the value �eld, whi
h is a

essed �rst,is
ompressible but the next �eld is not. Thus, initially value �eld is stored in
ompressed form but later when next �eld is found to be
ompressible, extralo
ations are allo
ated and both �elds are store in un
ompressed form. Finallyin the third
ase the value �eld is not
ompressible and therefore extra lo
ationsare allo
ated right away and none of the two �elds are ever stored in
ompressedform.

www.manaraa.com

3 Instru
tion Set SupportCompression redu
es the amount of heap allo
ated storage used by the programwhi
h typi
ally improves the data
a
he behavior. Also if both the �elds needto be read in tandem, a single load is enough to read both the �elds. However,the manipulation of the �elds also
reates additional overhead. To minimizethis overhead we have design new RISC-style instru
tions. We have designedthree simple instru
tions ea
h for pointer and non-pointer data respe
tively thateÆ
iently implement
ommon-pre�x and narrow-data transformations. The se-manti
s of the these instru
tions are summarized in Fig. 2. These instru
tionsare RISC-style instru
tions with
omplexity
omparable to existing bran
h andinteger ALU instru
tions. Let us dis
uss these instru
tions in greater detail.Che
king
ompressibility. Sin
e we would like to handle partially
ompressibledata, before we a
tually
ompress a data item at runtime, we must �rst
he
kwhether the data item is
ompressible. Therefore the �rst instru
tion type weintrodu
e allows eÆ
ient
he
king of data
ompressibility. We have provided thetwo new instru
tions that are des
ribed below. The �rst
he
ks the
ompress-ibility of pointer data and the se
ond does the same for non-pointer data.bneh17 R1, R2, L1 { is used to
he
k if the higher order 17 bits of R1 andR2 are the same. If they are the same, the exe
ution
ontinues and the �eldheld in R2
an be
ompressed; otherwise the bran
h is taken to a pointwhere we handle the situation, by allo
ating additional storage, in whi
hthe address in R2 is not
ompressible. The instru
tion also handles the
asewhere R2
ontains a nil pointer whi
h is represented by the value 0 both in
ompressed and un
ompressed forms. Sin
e 0 represents a nil pointer, thelower order 15 bits of an allo
ated address should never be all zeroes - to
orre
tly handle this situation we have modi�ed our mallo
 routine so thatit never allo
ates storage lo
ations with su
h addresses.bneh18 R1, L1 { is used to
he
k if the higher order 18 bits of R1 are identi
al(i.e., all 0's or all 1's). If they are the same, the exe
ution
ontinues and thevalue held in R1 is
ompressed; otherwise the value in R1 is not
ompress-ible and the bran
h is taken to a point where we pla
e
ode to handle thissituation by allo
ating additional storage.Extra
t-and-expand. If a pointer is stored in
ompressed form, before it
an bederefren
ed, we must �rst re
onstru
t its 32-bit representation. We do the samefor
ompressed non-pointer data before its use. Therefore the se
ond instru
tiontype that we introdu
e
arries out extra
t-and-expand operations. There are fournew instru
tions that we des
ribe below. The �rst two instru
tions are used toextra
t-and-expand
ompressed pointer �elds from lower and upper halves of a32-bit word respe
tively. The next two instru
tions do the same for non-poniterdata.xtrhl R1, R2, R3 { extra
ts the
ompressed pointer �eld stored in lower or-der bits (0 through 14) of register R3 and appends it to the
ommon-pre�x

www.manaraa.com

ontained in higher order bits (15 through 31) of R2 to
onstru
t the un
om-pressed pointer whi
h is then made available in R1. We also handle the
asewhen R3
ontains a nil pointer. If the
ompressed �eld is a nil pointer, R1 isset to nil.
BNEH17 R1,R2,L1
 if (R2 != 0) && (R131..15 != R231..15)

goto L1

31 ... 15 14 ... 0

R1

R2

BNEH18 R1,L1
 if (R131..14 != 0) && (R131..14 != 0x3ff)

goto L1

R1
31 ... 14 13 ... 0

XTRHL R1,R2,R3
 if (R314..0 != 0) /* Non-NULL case */

R1 = R231..15 R314..0
 else

R1 = 0
 31 ... 15 14 ... 0

R2

31 30 ... 16 15 14 ... 0

R3

R1

XTRHH R1,R2,R3
 if (R330..16 != 0) /* Non-NULL case */

R1 = R231..15 R330..16
 else

R1 = 0

R3

R1

31 30 ... 16 15 14 13 ... 0

R2

XTRL R1,R2
 if (R214 == 1)

R1 = 0x1ffff R214..0
 else

R1 = R214..0

-

xxxxxxxxxxxxxxxxR1

31 30 29 ... 16 15 14 ... 0

R2

XTRH R1,R2
 if (R230 == 1)

R1 = 0x1ffff R230..16
 else

R1 = R230..16

0

xxxxxxxxxxxxxxxxR1

R2

0 -

0

x

x

-

0

-

 31 ... 15 14 ... 0

31 30 ... 16 15 14 ... 0Fig. 2. DCX instru
tions.xtrhh R1, R2, R3 { extra
ts the
ompressed pointer �eld stored in the higherorder bits (16 through 30) of register R3 and appends it to the
ommon-pre�x
ontained in higher order bits (15 through 31) of R2 to
onstru
t theun
ompressed pointer whi
h is then made available in R1. If the
ompressed�eld is a nil pointer, R1 is set to nil.The instru
tions xtrhl and xtrhh
an also be used to
ompress two �eldstogether. However, they are not essential for this purpose be
ause typi
allythere are existing instru
tions whi
h
an perform this operation. In the MIPSlike instru
tion set we used in this work this was indeed the
ase.xtrl R1, R2 { extra
ts the �eld stored in lower half of the R2, expands it, andthen stores the resulting 32 bit value in R1.xtrh R1, R2 { extra
ts the �eld stored in the higher order bits of R2, exapandsit, and then stores the resulting 32 bit value in R1.

www.manaraa.com

Next we give a simple example to illustrate the use of the above instru
tions.Let us assume that an integer �eld t ! value and a pointer �eld t ! nextare
ompressed together into a single �eld t ! value next. In Fig. 3a we showhow
ompressibility
he
ks are used prior to appropriately storing newvalueand newnext values in to the
ompressed �elds. In Fig. 3b we illustrate theextra
t and expand instru
tions by extra
ting the
ompressed values stored int! value next. ; $16 : &t� > value next; $18 : newvalue; $19 : newnext;; bran
h if newvalue is not
ompressiblebneh18 $18, $L1; bran
h if newnext is not
ompressiblebneh17 $16, $19, $L1; store
ompressed data in t� > value nextori $19, $19, 0x7fffswr $18, 0($16)swr $19, 2($16)j $L2$L1: ; allo
ate extra lo
ations and store pointer; to extra lo
ations in t� > value next; store un
ompressed data in extra lo
ations� � �$L2: � � �(a) Illustration of
ompressibility
he
ks.; $16: &(t� > value next); $17: un
ompressed integer t� > value; $18: un
ompressed pointer t� > next;; load
ontents of t� > value nextlw $3,0($16); bran
h if $3 is a pointer to extra lo
ationsbltz $3, $L1; extra
t and expand t� > valuextrl $17, $3; extra
t and expand t� > nextxtrhh$18, $16, $3j $L2$L1: ; load values from extra lo
ations� � �$L2: � � �(b) Illustration of extra
t and expand instru
tions.Fig. 3. An example.

www.manaraa.com

4 Compiler SupportObje
t layout transformations
an only be applied to a C program if the userdoes not a

ess the �elds through expli
it address arithmeti
 and also does nottype
ast the obje
ts of the transformed type into obje
ts of another type. Likeprior work by Truong et al. [14℄ on �eld reorganization and instan
e interleaving,we assume that the programmer has given us the go ahead to freely transformthe data stru
tures when it is apprpriate to do so. From this step onwards therest of pro
ess is
arried out automati
ally by the
ompiler. In the remainderof this se
tion we des
ribe key aspe
ts of the the
ompiler support required fore�e
tive data
ompression.Identifying �elds for
ompression and pa
king. Our observation is that mostpointer �elds
an be
ompressed quite e�e
tively using the
ommon-pre�x trans-formation. Integer �elds to whi
h narrow-data transformation
an be applied
anbe identi�ed either based upon knowledge about the appli
ation or using valuepro�ling. The most
riti
al issue is that of pairing
ompressed �elds for pa
kinginto a single word. For this purpose we must �rst
ategorize the �elds as hot�elds and
old �elds. It is useful to pa
k two hot �elds together if they are typ-i
ally a

essed in tandem. This is be
ause in this situation a single load
an beshared while reading the two values. It is also useful to
ompress any two
old�elds even if they are not a

essed in tandem. This is be
ause even though they
annot share the same load, they are not a

essed frequently. In all other situa-tions it is not as useful to pa
k data together be
ause even though spa
e savingswill be obtained, exe
ution time will be adversely a�e
ted. We used basi
 blo
kfrequen
y
ounts to identify pairs of �elds belonging to the above
ategories andthen applied
ompression transformations to them.

mallo
 vs mallo
. We make use of

mallo
 [6℄, a modi�ed version of mallo
,for
arrying out storage allo
ation. This form of storage allo
ation was developedby Chilimbi et al. [6℄ and as des
ribed earlier it improves the lo
ality of dynami
data stru
tures by allo
ating the linked nodes of the data stru
ture as
lose toea
h other as possible in the heap. As a
onsequen
e, this te
hnique in
reases thelikelihood that the pointer �elds in a given node will be
ompressible. Thereforeit makes sense to use

mallo
 in order to exploit the synergy between

mallo
and data
ompression.Register pressure. Another issue that we
onsider in our implementation is thatof potential in
rease in register pressure. The
ode exe
uted when the pointer�elds are found to be un
ompressible is substantial and therefore it
an in
reaseregister pressure signi�
antly
ausing a loss in performan
e. However, we knowthat this
ode is exe
uted very infrequently sin
e very few �elds are un
ompress-ible. Therefore, in this pie
e of
ode we �rst free registers by saving values andthen after exe
uting the
ode the values are restored in registers. In other words,the in
rease in register pressure does not have an adverse e�e
t on frequentlyexe
uted
ode.

www.manaraa.com

Instru
tion
a
he behavior and
ode size. The additional instru
tions generatedfor implementing
ompression
an lead to an in
rease in
ode size whi
h
anfurther impa
t the instru
tion
a
he behavior. It is important to note howeverthat a large part of the
ode size in
rease is due to the handling of the infrequent
ase in whi
h the data is found not to be
ompressible. In order to minimize theimpa
t on the
ode size we
an share the
ode for handling the above infrequent
ase a
ross all the updates
orresponding to a given data �eld. To minimize theimpa
t of the performan
e on the instru
tion
a
he, we
an employ a
ode layoutstrategy whi
h pla
es the above infrequently exe
uted
ode elsewhere and
reatebran
hes to it and ba
k so that the instru
tion
a
he behavior for more frequentlyexe
uted
ode is minimally a�e
ted. Our implementation
urrently does notsupport the above te
hniques and therefore we observed
ode size in
rease anddegraded instru
tion
a
he behavior in our experiments.Code generation. The remainder of the
ode generation details for implementingdata
ompression are in most part quite straightforward. On
e the �elds havebeen sele
ted for
ompression and pa
king together, whenever a use of a valueof any of the �elds is en
ountered, the load is followed by an extra
t-and ex-pand instru
tion. If the value of any of
ompressed �elds is to be updated, the
ompressibility
he
k is performed before storing the value. When two hot �eldsthat are pa
ked together are to be read/updated, initially we generate separateloads/stores for them. Later in a separate pass we eliminate the later of the twoloads/stores whenever possible.5 Performan
e EvaluationExperimental setup. We have implemented the te
hniques des
ribed to evaluatetheir performan
e. The transformations have been implemented as part of theg

ompiler and the DCX instru
tions have been in
orporated in the MIPS likeinstru
tion set of the supers
alar pro
essor simulated by simples
alar [3℄. Theevaluation is based upon six ben
hmarks taken from the Olden test suite [5℄ (seeFig. 4a) whi
h
ontains pointer intensive programs that make extensive use ofdynami
ally allo
ated data stru
tures.In order to study the impa
t of memory performan
e we varied the input sizesof the programs and also varied the L2
a
he laten
y. The
a
he organization ofsimples
alar is shown in Fig. 4b. There are �rst level separate instru
tion anddata
a
hes (I-
a
he and D-
a
he). The lower level
a
he is a uni�ed-
a
he forinstru
tions and data. The L1
a
he used was a 16K dire
t mapped
a
he with9
y
le miss laten
y while the uni�ed L2
a
he is 256K with 100/200/400
y
lemiss laten
ies. Our experiments are for an out-of-order issue supers
alar withissue width of 4 instru
tions and the Bimod bran
h predi
tor.Impa
t on storage needs. The transformations applied and their impa
t on thenode sizes is shown in Fig. 5a. In the �rst four ben
hmarks (treeadd, bisort,tsp, and perimeter), node sizes are redu
ed by storing pairs of
ompressedpointers in a single word. In the health ben
hmark a pair of small values are

www.manaraa.com

Program Appli
ationtreeadd Re
ursive sum of val-ues in a B-treebisort Bitoni
 Sortingtsp Traveling salesmanproblemperimeter Perimeters of regionsin imageshealth Columbian health
aresimulationmst Minimum Spanningtree of a graph(a) Ben
hmarks.
Parameter ValueIssue Width 4 issue, out of orderI
a
he 16K dire
t mappedI
a
he miss laten
y 9
y
lesL1 data
a
he 16K dire
t mappedL1 data
a
he miss la-ten
y 9
y
lesL2 uni�ed
a
he 256K 2-wayMemory laten
y Con�guration 1/2/3 =(L2
a
he miss la-ten
y) 100/200/400
y
les(b) Ma
hine
on�gurations.Fig. 4. Experimental setup.
ompressed together and stored in a single word. Finally, in the mst ben
hmarka
ompressed pointer and a
ompressed small value are stored together in asingle word. The
hanges in node sizes range from 25% to 33% for �ve of theben
hmarks. Only in
ase of tsp is the redu
tion smaller { just over 10%.We measured the runtime savings in heap allo
ated storage for small andlarge program inputs. The results are given in Fig. 5b. The average savingsare nearly 25% while they range from 10% to 33% a
ross di�erent ben
hmarks.Even more importantly these savings represent signi�
ant levels of heap storage{ typi
ally in megabytes. For example, the 33% storage savings for treeaddrepresents 4.2 Mbytes and 17 Mbytes of heap storage savings for small and largeprogram inputs respe
tively. It should also be noted that su
h savings
annotbe obtained by other lo
ality improving te
hniques des
ribed earlier [14, 15, 6℄.From the results in Fig. 5b we make another very important observation. Theextra lo
ations allo
ated when non-
ompressible data is en
ountered is non-zerofor all of the ben
hmarks. In other words we observe that for none of the datastru
tures to whi
h our
ompression transformations were applied, were all ofthe instan
es of the data en
ountered at runtime a
tually
ompressible. A smallamount of additional lo
ations were allo
ated to hold a small number of un
om-pressible pointers and small values in ea
h
ase. Therefore the generality of ourtransformation whi
h allows handling of partially
ompressible data stru
turesis extremely important. If we had restri
ted the appli
ation of our te
hnique todata �elds that are always guaranteed to be
ompressible, we
ould not havea
hieved any
ompression and therefore no spa
e savings would have resulted.We also measured the in
rease in
ode size
aused by our transformations(see Fig. 5
). The in
rease in
ode size prior to linking is signi�
ant while afterlinking the in
rease is very small sin
e the user
ode is small part of the binaries.However, the reason for signi�
ant in
rease in user
ode is be
ause ea
h time a
ompressed �eld is updated, our
urrent implementation generates a new
opyof the additional
ode for handling the
ase where the data being stored may

www.manaraa.com

not be
ompressible. In pra
ti
e it is possible to share this
ode a
ross multipleupdates. On
e su
h sharing has been implemented, we expe
t that the in
reasein the size of user
ode will also be quite small.Program Transformation Applied Size Change(bytes)treeadd Com.Pre�x/Com.Pre�x from 28 to 20bisort Com.Pre�x/Com.Pre�x from 12 to 8tsp Com.Pre�x/Com.Pre�x from 36 to 32perimeter Com.Pre�x/Com.Pre�x from 12 to 8health NarrowData/NarrowData from 16 to 12mst Com.Pre�x/NarrowData from 16 to 12(a) Redu
tion in node size.
Program Before AfterLinking Linkingtreeadd 16.4% 0.04%bisort 40.0% 0.01%tsp 4.9% 0.18%perimeter 21.3% 1.97%health 33.7% 0.23%mst 10.7% 0.06%average 21.1% 0.41%(
) Code size in
rease.Storage (bytes)Small Input Large InputProgram Original Total (Extra) Savings Original Total (Extra) Savingstreeadd 12582900 8402040 (13440) 33.2 % 50331636 33605684 (51260) 33.2 %bisort 786420 549880 (25600) 30.1 % 3145716 2301304 (204160) 26.8 %tsp 5242840 4200352 (6080) 19.9 % 20971480 16800224 (23040) 19.9 %perimeter 4564364 3265380 (5120) 28.5 % 20332620 14546980 (23680) 28.5 %health 566872 510272 (320) 10.0 % 1128240 1015124 (320) 10.0 %mst 3414020 2367812 (320) 30.6 % 54550532 37781828 (320) 30.7 %average 25.4 % 24.9 %(b) Redu
tion in heap storage for small and large inputs.Fig. 5. Impa
t on storage needs.Impa
t on exe
ution times. Based upon the
y
le
ounts provided by the sim-ples
alar simulator we studied the
hanges in exe
ution times resulting from
ompression transformations. The impa
t of L2 laten
y on exe
ution times wasalso studied. The results in Fig. 6 are for small inputs. For L2
a
he laten
yof 100
y
les, the redu
tion in exe
ution times in
omparison to the originalprograms whi
h use mallo
 range from 3% to 64% while on an average the re-du
tion in exe
ution time is around 30%. The redu
tions for higher laten
ies arealso similar.We also
ompared our exe
ution times with versions of the programs that use

mallo
. Our approa
h outperforms

mallo
 in �ve out of the six ben
hmarks(our version of mst runs slightly slower than the

mallo
 version). On anaverage we outperform

mallo
 by nearly 10%. Our approa
h outperforms

mallo
 be
ause on
e the node sizes are redu
ed, typi
ally greater number ofnodes �t into a single
a
he line leading to a low number of
a
he misses. We alsopay additional runtime overhead in form of extra instru
tions needed to
arryout
ompression and extra
tion of
ompressed values. However, this additional

www.manaraa.com

exe
ution time is more than o�set by the time savings resulting from redu
ed
a
he misses; thus leading to overall redu
tion in exe
ution time. On an average,
ompression redu
es the exe
ution times by 10%, 15%, and 20% over

mallo
for L2
a
he laten
ies of 100, 200, and 400
y
les respe
tively. Therefore weobserve that as the laten
y of L2
a
he is in
reased,
ompression outperforms

mallo
 by a greater extent. In summary our approa
h provides large storagesavings and signi�
ant exe
ution time redu
tions over

mallo
.

treeadd
bisort tsp

perimeter
health mst

average
0

20

40

60

80

100

120

pe
rc

en
ta

ge
 c

om
pa

ris
on

Comp./Orig.*100 (Latency=100 cycles)
Comp./Orig.*100 (Latency=200 cycles)
Comp./Orig.*100 (Latency=400 cycles)
Comp./ccmalloc*100 (Latency=100 cycles)
Comp./ccmalloc*100 (Latency=200 cycles)
Comp./ccmalloc*100 (Latency=400 cycles)

Fig. 6. Redu
tion in exe
ution time due to data
ompression.We would also like to point out that the use of spe
ial DCX instru
tions was
riti
al in redu
ing the overhead of
ompression and extra
tion. Without DCXinstru
tions the programs would have ran signi�
antly slower. We ran versions ofprograms whi
h did not use DCX instru
tions for L2
a
he laten
y of 100
y
les.The average redu
tion in exe
ution times, in
omparison to original programs,dropped from 30% to 12.5%. Instead of an average redu
tion in exe
ution timesof 10% in
omparison to

mallo
 versions of the program we observed anaverage in
rease of 9% in exe
ution times.Impa
t on power
onsumption. We also
ompared the power
onsumption for the
ompression based programs with that of the original programs and

mallo
based programs (see Fig. 7). These measurements are based upon the Watt
h[1℄ system whi
h is built on top of the simples
alar simulator. These resultstra
k the exe
ution time results quite
losely. The average redu
tion in power
onsumption over the original programs is around 30% for the small input. Theredu
tions in power dissipation that
ompression provides over

mallo
 for thedi�erent
a
he laten
ies is also given. As we
an see, on an average,
ompressionredu
es the power dissipation by 5%, 10%, and 15% over

mallo
 for L2
a
helaten
ies of 100, 200, and 400
y
les respe
tively.

www.manaraa.com

treeadd
bisort tsp

perimeter
health mst

average
0

20

40

60

80

100

120

pe
rc

en
ta

ge
 c

om
pa

ris
on

Comp./Orig.*100 (Latency=100 cycles)
Comp./Orig.*100 (Latency=200 cycles)
Comp./Orig.*100 (Latency=400 cycles)
Comp./ccmalloc*100 (Latency=100 cycles)
Comp./ccmalloc*100 (Latency=200 cycles)
Comp./ccmalloc*100 (Latency=400 cycles)

Fig. 7. Impa
t on in power
onsumption.Impa
t on
a
he performan
e. Finally in Fig. 8 we present the impa
t of
om-pression on
a
he behavior, in
luding I-
a
he, D-
a
he and uni�ed L2
a
hebehaviors. As expe
ted, the I-
a
he performan
e is degraded due to in
reasein
ode size
aused by our
urrent implementation of
ompression. However,the performan
es of D-
a
he and uni�ed
a
he are signi�
antly improved. Thisimprovement in data
a
he performan
e is a dire
t
onsequen
e of
ompression.

treeadd
bisort tsp

perimeter
health mst

average
0

20

40

60

80

100

120

140

160

pe
rc

en
ta

ge
 c

om
pa

ris
on

I−cache:Comp./Orig.*100
I−cache:Comp./ccmalloc*100
D−cache:Comp./Orig.*100
D−cache:Comp./ccmalloc*100
U−cache:Comp./Orig.*100
U−cache:Comp./ccmalloc*100

Fig. 8. Impa
t on
a
he misses.

www.manaraa.com

6 Related WorkRe
ently there has been a lot of interest in exploiting narrow width values toimprove program performan
e [2, 12, 13℄. However, our work fo
usses on pointerintensive appli
ations for whi
h it is important to also handle pointer data. Agreat deal of resear
h has been
ondu
ted on development of lo
ality improvingtransformations for dynami
ally allo
ated data stru
tures. These transforma-tions alter obje
t layout and pla
ement to improve
a
he performan
e [14, 6, 15℄.However, none of these transformations result in spa
e savings.Existing
ompression transformations [10, 7℄ rely upon
ompile time analysisto prove that
ertain data items do not require a
omplete word of memory. Theyare appli
able only when the
ompiler
an determine that the data being
om-pressed is fully
ompressible and they only apply to narrow width non-pointerdata. In
ontrast, our
ompression transformations apply to partially
ompress-ible data and, in addition to handling narrow width non-pointer data, they alsoapply to pointer data. Our approa
h is not only more general but it is also sim-pler in one respe
t. We do not require
ompile-time analysis to prove that thedata is always
ompressible. Instead simple
ompile-time heuristi
s are suÆ
ientto determine that the data is likely to be
ompressible.ISA extensions have been developed to eÆ
iently pro
ess narrow width datain
luding Intel's MMX [9℄ and Motorola's AltiVe
 [11℄. Compiler te
hniques arealso being developed to exploit su
h instru
tion sets [8℄. However, the instru
-tions we require are quite di�erent from MMX instru
tions be
ause we musthandle partially
ompressible data stru
tures and we must also handle pointerdata.7 Con
lusionsIn
on
lusion we have introdu
ed a new
lass of transformations that applydata
ompression te
hniques to
ompa
t the sizes of dynami
ally allo
ated datastru
tures. These transformations result in large spa
e savings and also result insigni�
ant redu
tions in program exe
ution times and power dissipation due toimproved memory performan
e.An attra
tive property of these transformations is that they are appli
ableto partially
ompressible data stru
tures. This is extremely important be
ausea

ording to our experiments, while the data stru
tures in all of the ben
hmarkswe studied are very highly
ompressible, they
ontain small amounts of un
om-pressible data. Even for programs with fully
ompressible data stru
tures ourapproa
h has one advantage. The appli
ation of
ompression transformations
anbe driven by simple value pro�ling te
hniques [4℄. There is no need for
omplex
ompile-time analyses for identifying fully
ompressible �elds in data stru
tures.Our approa
h is appli
able to a more general
lass of programs than exist-ing
ompression te
hniques: we
an
ompress pointers as well as non-pointerdata; and we
an
ompress partially
ompressible data stru
tures. Finally wehave designed the DCX ISA extensions to enable eÆ
ient manipulation of
om-pressed data. The same task
annot be
arried using MMX type instru
tions.Our main
ontribution is that data
ompression te
hniques
an now be used to

www.manaraa.com

improve performan
e of general purpose programs and therefore this work takesthe utility of
ompression beyond the realm of multimedia appli
ations.Referen
es1. D. Brooks, V. Tiwari, and D. Martonosi, \Watt
h: A Framework for Ar
hite
ture-Level Power Analysis and Optimizations," 27th International Symposium on Com-puter Ar
hite
ture (ISCA), pages 83{94, May 2000.2. D. Brooks and D. Martonosi, \Dynami
ally Exploiting Narrow Width Operandsto Improve Pro
essor Power and Performan
e," 5th International Symposium onHigh-Performan
e Computer Ar
hite
ture (HPCA), pages 13{22, Jan. 1999.3. D. Burger and T.M. Austin, \The Simples
alar Tool Set, Version 2.0," ComputerAr
hite
ture News, pages 13{25, June 1997.4. M. Burrows, U. Erlingson, S-T.A. Leung, M.T. Vandevoorde, C.A. Waldspurger,K. Walker, and W.E. Weihl, \EÆ
ient and Flexible Value Sampling," The NinthInternational Conferen
e on Ar
hite
tural Support for Programming Languages andOperating Systems (ASPLOS), pages 160{167, Cambridge, MA, November 2000.5. M. Carlisle, \Olden: Parallelizing Progrms with Dynami
 Data Stru
tures onDistributed-Memory Ma
hines," PhD Thesis, Prin
eton Univ., Dept. of Comp. S
i-en
e, June 1996.6. T.M. Chilimbi, M.D. Hill, and J.R. Larus, \Ca
he-Cons
ious Stru
ture Layout,"ACM SIGPLAN Conferen
e on Programming Language Design and Implementation(PLDI), pages 1{12, Atlanta, Georgia, May 1999.7. J. Davidson and S. Jinturkar, \Memory a

ess
oales
ing : a te
hnique for elimi-nating redundant memory a

esses," ACM SIGPLAN Conferen
e on ProgrammingLanguage Design and Implementation (PLDI), pages 186{195, 1994.8. S. Larsen and S. Amarasinghe, \Exploiting Superword Level Parallelism with Multi-media Instru
tion Sets," ACM SIGPLAN Conf. on Programming Language Designand Implementation (PLDI), pages 145{156, Van
ouver B.C., Canada, June 2000.9. A. Peleg and U. Weiser, MMX Te
hnology Extension to Intel Ar
hite
ture. 16(4):42-50, August 1996.10. M. Stephenson, J. Babb, and S. Amarasinghe, \Bitwidth Analysis with Appli
ationto Sili
on Compilation," ACM SIGPLAN Conf. on Programming Language Designand Implementation (PLDI), pages 108{120, Van
ouver B.C., Canada, June 2000.11. J. Tyler, J. Lent, A. Mather, and H.V. Nguyen, \AltiVe
(tm): Bringing Ve
torTe
hnology to the PowerPC(tm) Pro
essor Family," Phoenix, AZ, February 1999.12. Y. Zhang, J. Yang, and R. Gupta, \Frequent Value Lo
ality and Value-Centri
Data Ca
he Design," The Ninth International Conferen
e on Ar
hite
tural Sup-port for Programming Languages and Operating Systems (ASPLOS), pages 150{159,Cambridge, MA, November 2000.13. J. Yang, Y. Zhang, and R. Gupta, \Frequent Value Compression in Data Ca
hes,"The 33nd Annual IEEE/ACM International Symposium on Mi
roar
hite
ture (MI-CRO), pages 258{265, Monterey, CA, De
ember 2000.14. D.N. Truong, F. Bodin, and A. Sezne
, \Improving Ca
he Behavior of Dynami
allyAllo
ated Data Stru
tures," International Conferen
e on Parallel Ar
hite
tures andCompilation Te
hniques (PACT), pages 322{329, Paris, Fran
e, 1998.15. B. Calder, C. Krintz, S. John, and T. Austin, \Ca
he-Cons
ious Data Pla
ement,"8th International Conf. on Ar
hite
tural Support for Programming Languages andOperating Systems (ASPLOS), pages 139{149, San Jose, California, O
tober 1998.

