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Data Compression Transformations forDynamially Alloated Data Strutures ?Youtao Zhang and Rajiv GuptaDept. of Computer Siene, The University of Arizona, Tuson, Arizona 85721Abstrat. We introdue a lass of transformations whih modify therepresentation of dynami data strutures used in programs with theobjetive of ompressing their sizes. We have developed the ommon-pre�x and narrow-data transformations that respetively ompress a 32bit address pointer and a 32 bit integer �eld into 15 bit entities. A pairof �elds whih have been ompressed by the above ompression trans-formations are paked together into a single 32 bit word. The abovetransformations are designed to apply to data strutures that are par-tially ompressible, that is, they ompress portions of data struturesto whih transformations apply and provide a mehanism to handle thedata that is not ompressible. The aesses to ompressed data are ef-�iently implemented by designing data ompression extensions (DCX)to the proessor's instrution set. We have observed average redutionsin heap alloated storage of 25% and average redutions in exeutiontime and power onsumption of 30%. If DCX support is not providedthe redutions in exeution times fall from 30% to 12.5%.1 IntrodutionWith the proliferation of limited memory omputing devies, optimizations thatredue memory requirements are inreasing in importane. We introdue a lassof transformations whih modify the representation of dynamially alloateddata strutures used in pointer intensive programs with the objetive of om-pressing their sizes. The �elds of a node in a dynami data struture typiallyonsist of both pointer and non-pointer data. Therefore we have developed theommon-pre�x and narrow-data transformations that respetively ompress a32 bit address pointer and a 32 bit integer �eld into 15 bit entities. A pair of�elds whih have been ompressed an be paked into a single 32 bit word.As a onsequene of ompression, the memory footprint of the data struturesis signi�antly redued leading to signi�ant savings in heap alloated storagerequirements whih is quite important for memory intensive appliations. Theredution in memory footprint an also lead to signi�antly redued exeutiontimes due to a redution in data ahe misses that our in the transformedprogram.? Supported by DARPA PAC/C Award. F29601-00-1-0183 and NSF grants CCR-0105355, CCR-0096122, EIA-9806525, and EIA-0080123 to the Univ. of Arizona.
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An important feature of our transformations is that they have been designedto apply to data strutures that are partially ompressible. In other words, theyompress portions of data strutures to whih transformations apply and providea mehanism to handle the data that is not ompressible. Initially data storagefor a ompressed data struture is alloated assuming that it is fully ompress-ible. However, at runtime, when unompressible data is enountered, additionalstorage is alloated to handle suh data. Our experiene with appliations fromOlden test suite demonstrates that this is a highly important feature beauseall the data strutures that we examined in our experimentation were highlyompressible, but none were fully ompressible.For eÆiently aessing data in ompressed form we propose data ompres-sion extensions (DCX) to a RISC-style ISA whih onsist of six simple instru-tions. These instrutions perform two types of operations. First sine we musthandle partially ompressible data strutures, whenever a �eld that has beenompressed is updated, we must hek to see if the new value to be stored in that�eld is indeed ompressible. Seond when we need to make use of a ompressedvalue in a omputation, we must perform an extrat and expand operation toobtain the original 32 bit representation of the value.We have implemented our tehniques and evaluated them. The DCX in-strutions have been inorporated into the MIPS like instrution set used by thesimplesalar simulator. The ompression transformations have been inorpo-rated in the g ompiler. We have also addressed other important implemen-tation issues inluding the seletion of �elds for ompression and paking. Ourexperiments with six benhmarks from the Olden test suite demonstrate an av-erage spae savings of 25% in heap alloated storage and average redutions of30% in exeution times and power onsumption. The net redution in exeutiontimes is attributable to redued miss rates for L1 data ahe and L2 uni�edahe and the availability of DCX instrutions.2 Data Compression TransformationsAs mentioned earlier, we have developed two ompression transformations: one tohandle pointer data and the other to handle narrow width non-pointer data. Weillustrate the transformations by using an example of the dynamially alloatedlink list data struture shown below { the next and value �elds are ompressed toillustrate the ompression of both pointer and non-pointer data. The ompressed�elds are paked together to form a single 32 bit �eld value next.Original Struture: Transformed Struture:strut list node f strut list node f� � �; � � �;int value; int value next;strut list node *next; g *t;g *t;Common-Pre�x transformation for pointer data. The pointer ontained in thenext �eld of the link list an be ompressed under ertain onditions. In parti-ular, onsider the addresses orresponding to an instane of list node (addr1)
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and the next �eld in that node (addr2). If the two addresses share a ommon17 bit pre�x beause they are loated fairly lose in memory, we lassify thenext pointer as ompressible. In this ase we eliminate the ommon pre�x fromaddress addr2 whih is stored in the next pointer �eld. The lower order 15 bitsfrom addr2 represent the representation of the pointer in ompressed form. The32 bit representation of a next �eld an be reonstruted when required by ob-taining the pre�x from the pointer to the list node instane to whih the next�eld belongs.Narrow data transformation for non-pointer data. Now let us onsider the om-pression of the narrow width integer value in the value �eld. If the 18 higherorder bits of an array element are idential, that is, they are either all 0's orall 1's, it is lassi�ed as ompressible. The 17 higher order bits are disardedand leaving a 15 bit entity. Sine the 17 bits disarded are idential to the mostsigni�ant order bit of the 15 bit entity, the 32 bit representation an be easilyderived when needed by repliating the most signi�ant bit.Paking together ompressed �elds. The value and next �elds of a node belongingto an instane of list node an be paked together into a single 32 bit wordas they are simply 15 bit entities in their ompressed form. Together they arestored in value next �eld of the transformed struture. The 32 bits of value nextare divided into two half words. Eah ompressed �eld is stored in the lowerorder 15 bits of the orresponding half word. Aording to the above strategy,bits 15 and 31 are not used by the ompressed �elds. Next we desribe thehandling of unompressible data in partially ompressible data strutures. Theimplementation of partially ompressible data strutures require an additionalbit for enoding information. This is why we ompress �elds down to 15 bitentities and not into 16 bit entities.Partial ompressibility. Our basi approah is to alloate only enough storageto aommodate a ompressed node when a new node in the data struture isreated. Later, as the pointer �elds are assigned values, we hek to see if the�elds are ompressible. If they are, they an be aommodated in the alloatedspae; otherwise additional storage is alloated to hold the �elds in unompressedform. The previously alloated loation is now used to hold a pointer to thisadditional storage. Therefore for aessing unompressible �elds we have to gothrough an extra step of indiretion.If the unompressible data stored in the �elds is modi�ed, it is possible thatthe �elds may now beome ompressible. However, we do not arry out suhheks and instead we leave the �elds in suh ases in unompressed form. Thisis beause exploitation of suh ompression opportunities an lead to repeatedalloation and dealloation of extra loations if data values repeatedly keeposillating between ompressible and unompressible kind. To avoid repeatedalloation and dealloation of extra loations we simplify our approah so thatone a �eld is assigned an unompressible value, from then onwards, the data inthe �eld is always maintained in unompressed form.
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We use the most signi�ant bit (bit 31) in the word to indiate whether ornot the data stored in the word is ompressed or not. This is possible beause inthe MIPS base system that we use, the most signi�ant bit for all heap addressesis always 0. It ontains a 0 to indiate that the word ontains ompressed values.If it ontains a 1, it means that one or both of values were not ompressible andinstead the word ontains a pointer to an extra pair of dynamially alloatedloations whih ontain the values of the two �elds in unompressed form. Whilebit 31 is used to enode extra information, bit 15 is never used for any purpose.
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nilFig. 1. Dealing with unompressible data.In Fig. 1 we illustrate the above method using an example in whih an in-stane of list node is alloated and then the value and next �elds are set upone at a time. As we an see �rst storage is alloated to aommodate the two�elds in ompressed form. As soon as the �rst unompressible �eld is enoun-tered additional storage is alloated to hold the two �elds in unompressed form.Under this sheme there are three possibilities whih are illustrated in Fig. 1.In the �rst ase both �elds are found to be ompressible and therefore no extraloations are alloated. In the seond ase the value �eld, whih is aessed �rst,is ompressible but the next �eld is not. Thus, initially value �eld is stored inompressed form but later when next �eld is found to be ompressible, extraloations are alloated and both �elds are store in unompressed form. Finallyin the third ase the value �eld is not ompressible and therefore extra loationsare alloated right away and none of the two �elds are ever stored in ompressedform.
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3 Instrution Set SupportCompression redues the amount of heap alloated storage used by the programwhih typially improves the data ahe behavior. Also if both the �elds needto be read in tandem, a single load is enough to read both the �elds. However,the manipulation of the �elds also reates additional overhead. To minimizethis overhead we have design new RISC-style instrutions. We have designedthree simple instrutions eah for pointer and non-pointer data respetively thateÆiently implement ommon-pre�x and narrow-data transformations. The se-mantis of the these instrutions are summarized in Fig. 2. These instrutionsare RISC-style instrutions with omplexity omparable to existing branh andinteger ALU instrutions. Let us disuss these instrutions in greater detail.Cheking ompressibility. Sine we would like to handle partially ompressibledata, before we atually ompress a data item at runtime, we must �rst hekwhether the data item is ompressible. Therefore the �rst instrution type weintrodue allows eÆient heking of data ompressibility. We have provided thetwo new instrutions that are desribed below. The �rst heks the ompress-ibility of pointer data and the seond does the same for non-pointer data.bneh17 R1, R2, L1 { is used to hek if the higher order 17 bits of R1 andR2 are the same. If they are the same, the exeution ontinues and the �eldheld in R2 an be ompressed; otherwise the branh is taken to a pointwhere we handle the situation, by alloating additional storage, in whihthe address in R2 is not ompressible. The instrution also handles the asewhere R2 ontains a nil pointer whih is represented by the value 0 both inompressed and unompressed forms. Sine 0 represents a nil pointer, thelower order 15 bits of an alloated address should never be all zeroes - toorretly handle this situation we have modi�ed our mallo routine so thatit never alloates storage loations with suh addresses.bneh18 R1, L1 { is used to hek if the higher order 18 bits of R1 are idential(i.e., all 0's or all 1's). If they are the same, the exeution ontinues and thevalue held in R1 is ompressed; otherwise the value in R1 is not ompress-ible and the branh is taken to a point where we plae ode to handle thissituation by alloating additional storage.Extrat-and-expand. If a pointer is stored in ompressed form, before it an bederefrened, we must �rst reonstrut its 32-bit representation. We do the samefor ompressed non-pointer data before its use. Therefore the seond instrutiontype that we introdue arries out extrat-and-expand operations. There are fournew instrutions that we desribe below. The �rst two instrutions are used toextrat-and-expand ompressed pointer �elds from lower and upper halves of a32-bit word respetively. The next two instrutions do the same for non-poniterdata.xtrhl R1, R2, R3 { extrats the ompressed pointer �eld stored in lower or-der bits (0 through 14) of register R3 and appends it to the ommon-pre�x
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ontained in higher order bits (15 through 31) of R2 to onstrut the unom-pressed pointer whih is then made available in R1. We also handle the asewhen R3 ontains a nil pointer. If the ompressed �eld is a nil pointer, R1 isset to nil.
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31     30 ... 16        15       14 ... 0Fig. 2. DCX instrutions.xtrhh R1, R2, R3 { extrats the ompressed pointer �eld stored in the higherorder bits (16 through 30) of register R3 and appends it to the ommon-pre�x ontained in higher order bits (15 through 31) of R2 to onstrut theunompressed pointer whih is then made available in R1. If the ompressed�eld is a nil pointer, R1 is set to nil.The instrutions xtrhl and xtrhh an also be used to ompress two �eldstogether. However, they are not essential for this purpose beause typiallythere are existing instrutions whih an perform this operation. In the MIPSlike instrution set we used in this work this was indeed the ase.xtrl R1, R2 { extrats the �eld stored in lower half of the R2, expands it, andthen stores the resulting 32 bit value in R1.xtrh R1, R2 { extrats the �eld stored in the higher order bits of R2, exapandsit, and then stores the resulting 32 bit value in R1.
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Next we give a simple example to illustrate the use of the above instrutions.Let us assume that an integer �eld t ! value and a pointer �eld t ! nextare ompressed together into a single �eld t ! value next. In Fig. 3a we showhow ompressibility heks are used prior to appropriately storing newvalueand newnext values in to the ompressed �elds. In Fig. 3b we illustrate theextrat and expand instrutions by extrating the ompressed values stored int! value next. ; $16 : &t� > value next; $18 : newvalue; $19 : newnext;; branh if newvalue is not ompressiblebneh18 $18, $L1; branh if newnext is not ompressiblebneh17 $16, $19, $L1; store ompressed data in t� > value nextori $19, $19, 0x7fffswr $18, 0($16)swr $19, 2($16)j $L2$L1: ; alloate extra loations and store pointer; to extra loations in t� > value next; store unompressed data in extra loations� � �$L2: � � �(a) Illustration of ompressibility heks.; $16: &(t� > value next); $17: unompressed integer t� > value; $18: unompressed pointer t� > next;; load ontents of t� > value nextlw $3,0($16); branh if $3 is a pointer to extra loationsbltz $3, $L1; extrat and expand t� > valuextrl $17, $3; extrat and expand t� > nextxtrhh$18, $16, $3j $L2$L1: ; load values from extra loations� � �$L2: � � �(b) Illustration of extrat and expand instrutions.Fig. 3. An example.
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4 Compiler SupportObjet layout transformations an only be applied to a C program if the userdoes not aess the �elds through expliit address arithmeti and also does nottypeast the objets of the transformed type into objets of another type. Likeprior work by Truong et al. [14℄ on �eld reorganization and instane interleaving,we assume that the programmer has given us the go ahead to freely transformthe data strutures when it is apprpriate to do so. From this step onwards therest of proess is arried out automatially by the ompiler. In the remainderof this setion we desribe key aspets of the the ompiler support required fore�etive data ompression.Identifying �elds for ompression and paking. Our observation is that mostpointer �elds an be ompressed quite e�etively using the ommon-pre�x trans-formation. Integer �elds to whih narrow-data transformation an be applied anbe identi�ed either based upon knowledge about the appliation or using valuepro�ling. The most ritial issue is that of pairing ompressed �elds for pakinginto a single word. For this purpose we must �rst ategorize the �elds as hot�elds and old �elds. It is useful to pak two hot �elds together if they are typ-ially aessed in tandem. This is beause in this situation a single load an beshared while reading the two values. It is also useful to ompress any two old�elds even if they are not aessed in tandem. This is beause even though theyannot share the same load, they are not aessed frequently. In all other situa-tions it is not as useful to pak data together beause even though spae savingswill be obtained, exeution time will be adversely a�eted. We used basi blokfrequeny ounts to identify pairs of �elds belonging to the above ategories andthen applied ompression transformations to them.mallo vs mallo. We make use of mallo [6℄, a modi�ed version of mallo,for arrying out storage alloation. This form of storage alloation was developedby Chilimbi et al. [6℄ and as desribed earlier it improves the loality of dynamidata strutures by alloating the linked nodes of the data struture as lose toeah other as possible in the heap. As a onsequene, this tehnique inreases thelikelihood that the pointer �elds in a given node will be ompressible. Thereforeit makes sense to use mallo in order to exploit the synergy between malloand data ompression.Register pressure. Another issue that we onsider in our implementation is thatof potential inrease in register pressure. The ode exeuted when the pointer�elds are found to be unompressible is substantial and therefore it an inreaseregister pressure signi�antly ausing a loss in performane. However, we knowthat this ode is exeuted very infrequently sine very few �elds are unompress-ible. Therefore, in this piee of ode we �rst free registers by saving values andthen after exeuting the ode the values are restored in registers. In other words,the inrease in register pressure does not have an adverse e�et on frequentlyexeuted ode.
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Instrution ahe behavior and ode size. The additional instrutions generatedfor implementing ompression an lead to an inrease in ode size whih anfurther impat the instrution ahe behavior. It is important to note howeverthat a large part of the ode size inrease is due to the handling of the infrequentase in whih the data is found not to be ompressible. In order to minimize theimpat on the ode size we an share the ode for handling the above infrequentase aross all the updates orresponding to a given data �eld. To minimize theimpat of the performane on the instrution ahe, we an employ a ode layoutstrategy whih plaes the above infrequently exeuted ode elsewhere and reatebranhes to it and bak so that the instrution ahe behavior for more frequentlyexeuted ode is minimally a�eted. Our implementation urrently does notsupport the above tehniques and therefore we observed ode size inrease anddegraded instrution ahe behavior in our experiments.Code generation. The remainder of the ode generation details for implementingdata ompression are in most part quite straightforward. One the �elds havebeen seleted for ompression and paking together, whenever a use of a valueof any of the �elds is enountered, the load is followed by an extrat-and ex-pand instrution. If the value of any of ompressed �elds is to be updated, theompressibility hek is performed before storing the value. When two hot �eldsthat are paked together are to be read/updated, initially we generate separateloads/stores for them. Later in a separate pass we eliminate the later of the twoloads/stores whenever possible.5 Performane EvaluationExperimental setup. We have implemented the tehniques desribed to evaluatetheir performane. The transformations have been implemented as part of theg ompiler and the DCX instrutions have been inorporated in the MIPS likeinstrution set of the supersalar proessor simulated by simplesalar [3℄. Theevaluation is based upon six benhmarks taken from the Olden test suite [5℄ (seeFig. 4a) whih ontains pointer intensive programs that make extensive use ofdynamially alloated data strutures.In order to study the impat of memory performane we varied the input sizesof the programs and also varied the L2 ahe lateny. The ahe organization ofsimplesalar is shown in Fig. 4b. There are �rst level separate instrution anddata ahes (I-ahe and D-ahe). The lower level ahe is a uni�ed-ahe forinstrutions and data. The L1 ahe used was a 16K diret mapped ahe with9 yle miss lateny while the uni�ed L2 ahe is 256K with 100/200/400 ylemiss latenies. Our experiments are for an out-of-order issue supersalar withissue width of 4 instrutions and the Bimod branh preditor.Impat on storage needs. The transformations applied and their impat on thenode sizes is shown in Fig. 5a. In the �rst four benhmarks (treeadd, bisort,tsp, and perimeter), node sizes are redued by storing pairs of ompressedpointers in a single word. In the health benhmark a pair of small values are
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Program Appliationtreeadd Reursive sum of val-ues in a B-treebisort Bitoni Sortingtsp Traveling salesmanproblemperimeter Perimeters of regionsin imageshealth Columbian health aresimulationmst Minimum Spanningtree of a graph(a) Benhmarks.
Parameter ValueIssue Width 4 issue, out of orderI ahe 16K diret mappedI ahe miss lateny 9 ylesL1 data ahe 16K diret mappedL1 data ahe miss la-teny 9 ylesL2 uni�ed ahe 256K 2-wayMemory lateny Con�guration 1/2/3 =(L2 ahe miss la-teny) 100/200/400 yles(b) Mahine on�gurations.Fig. 4. Experimental setup.ompressed together and stored in a single word. Finally, in the mst benhmarka ompressed pointer and a ompressed small value are stored together in asingle word. The hanges in node sizes range from 25% to 33% for �ve of thebenhmarks. Only in ase of tsp is the redution smaller { just over 10%.We measured the runtime savings in heap alloated storage for small andlarge program inputs. The results are given in Fig. 5b. The average savingsare nearly 25% while they range from 10% to 33% aross di�erent benhmarks.Even more importantly these savings represent signi�ant levels of heap storage{ typially in megabytes. For example, the 33% storage savings for treeaddrepresents 4.2 Mbytes and 17 Mbytes of heap storage savings for small and largeprogram inputs respetively. It should also be noted that suh savings annotbe obtained by other loality improving tehniques desribed earlier [14, 15, 6℄.From the results in Fig. 5b we make another very important observation. Theextra loations alloated when non-ompressible data is enountered is non-zerofor all of the benhmarks. In other words we observe that for none of the datastrutures to whih our ompression transformations were applied, were all ofthe instanes of the data enountered at runtime atually ompressible. A smallamount of additional loations were alloated to hold a small number of unom-pressible pointers and small values in eah ase. Therefore the generality of ourtransformation whih allows handling of partially ompressible data struturesis extremely important. If we had restrited the appliation of our tehnique todata �elds that are always guaranteed to be ompressible, we ould not haveahieved any ompression and therefore no spae savings would have resulted.We also measured the inrease in ode size aused by our transformations(see Fig. 5). The inrease in ode size prior to linking is signi�ant while afterlinking the inrease is very small sine the user ode is small part of the binaries.However, the reason for signi�ant inrease in user ode is beause eah time aompressed �eld is updated, our urrent implementation generates a new opyof the additional ode for handling the ase where the data being stored may
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not be ompressible. In pratie it is possible to share this ode aross multipleupdates. One suh sharing has been implemented, we expet that the inreasein the size of user ode will also be quite small.Program Transformation Applied Size Change(bytes)treeadd Com.Pre�x/Com.Pre�x from 28 to 20bisort Com.Pre�x/Com.Pre�x from 12 to 8tsp Com.Pre�x/Com.Pre�x from 36 to 32perimeter Com.Pre�x/Com.Pre�x from 12 to 8health NarrowData/NarrowData from 16 to 12mst Com.Pre�x/NarrowData from 16 to 12(a) Redution in node size.
Program Before AfterLinking Linkingtreeadd 16.4% 0.04%bisort 40.0% 0.01%tsp 4.9% 0.18%perimeter 21.3% 1.97%health 33.7% 0.23%mst 10.7% 0.06%average 21.1% 0.41%() Code size inrease.Storage (bytes)Small Input Large InputProgram Original Total (Extra) Savings Original Total (Extra) Savingstreeadd 12582900 8402040 (13440) 33.2 % 50331636 33605684 (51260) 33.2 %bisort 786420 549880 (25600) 30.1 % 3145716 2301304 (204160) 26.8 %tsp 5242840 4200352 (6080) 19.9 % 20971480 16800224 (23040) 19.9 %perimeter 4564364 3265380 (5120) 28.5 % 20332620 14546980 (23680) 28.5 %health 566872 510272 (320) 10.0 % 1128240 1015124 (320) 10.0 %mst 3414020 2367812 (320) 30.6 % 54550532 37781828 (320) 30.7 %average 25.4 % 24.9 %(b) Redution in heap storage for small and large inputs.Fig. 5. Impat on storage needs.Impat on exeution times. Based upon the yle ounts provided by the sim-plesalar simulator we studied the hanges in exeution times resulting fromompression transformations. The impat of L2 lateny on exeution times wasalso studied. The results in Fig. 6 are for small inputs. For L2 ahe latenyof 100 yles, the redution in exeution times in omparison to the originalprograms whih use mallo range from 3% to 64% while on an average the re-dution in exeution time is around 30%. The redutions for higher latenies arealso similar.We also ompared our exeution times with versions of the programs that usemallo. Our approah outperforms mallo in �ve out of the six benhmarks(our version of mst runs slightly slower than the mallo version). On anaverage we outperform mallo by nearly 10%. Our approah outperformsmallo beause one the node sizes are redued, typially greater number ofnodes �t into a single ahe line leading to a low number of ahe misses. We alsopay additional runtime overhead in form of extra instrutions needed to arryout ompression and extration of ompressed values. However, this additional
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exeution time is more than o�set by the time savings resulting from reduedahe misses; thus leading to overall redution in exeution time. On an average,ompression redues the exeution times by 10%, 15%, and 20% over mallofor L2 ahe latenies of 100, 200, and 400 yles respetively. Therefore weobserve that as the lateny of L2 ahe is inreased, ompression outperformsmallo by a greater extent. In summary our approah provides large storagesavings and signi�ant exeution time redutions over mallo.
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Fig. 6. Redution in exeution time due to data ompression.We would also like to point out that the use of speial DCX instrutions wasritial in reduing the overhead of ompression and extration. Without DCXinstrutions the programs would have ran signi�antly slower. We ran versions ofprograms whih did not use DCX instrutions for L2 ahe lateny of 100 yles.The average redution in exeution times, in omparison to original programs,dropped from 30% to 12.5%. Instead of an average redution in exeution timesof 10% in omparison to mallo versions of the program we observed anaverage inrease of 9% in exeution times.Impat on power onsumption. We also ompared the power onsumption for theompression based programs with that of the original programs and mallobased programs (see Fig. 7). These measurements are based upon the Watth[1℄ system whih is built on top of the simplesalar simulator. These resultstrak the exeution time results quite losely. The average redution in poweronsumption over the original programs is around 30% for the small input. Theredutions in power dissipation that ompression provides over mallo for thedi�erent ahe latenies is also given. As we an see, on an average, ompressionredues the power dissipation by 5%, 10%, and 15% over mallo for L2 ahelatenies of 100, 200, and 400 yles respetively.
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Fig. 7. Impat on in power onsumption.Impat on ahe performane. Finally in Fig. 8 we present the impat of om-pression on ahe behavior, inluding I-ahe, D-ahe and uni�ed L2 ahebehaviors. As expeted, the I-ahe performane is degraded due to inreasein ode size aused by our urrent implementation of ompression. However,the performanes of D-ahe and uni�ed ahe are signi�antly improved. Thisimprovement in data ahe performane is a diret onsequene of ompression.
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Fig. 8. Impat on ahe misses.
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6 Related WorkReently there has been a lot of interest in exploiting narrow width values toimprove program performane [2, 12, 13℄. However, our work fousses on pointerintensive appliations for whih it is important to also handle pointer data. Agreat deal of researh has been onduted on development of loality improvingtransformations for dynamially alloated data strutures. These transforma-tions alter objet layout and plaement to improve ahe performane [14, 6, 15℄.However, none of these transformations result in spae savings.Existing ompression transformations [10, 7℄ rely upon ompile time analysisto prove that ertain data items do not require a omplete word of memory. Theyare appliable only when the ompiler an determine that the data being om-pressed is fully ompressible and they only apply to narrow width non-pointerdata. In ontrast, our ompression transformations apply to partially ompress-ible data and, in addition to handling narrow width non-pointer data, they alsoapply to pointer data. Our approah is not only more general but it is also sim-pler in one respet. We do not require ompile-time analysis to prove that thedata is always ompressible. Instead simple ompile-time heuristis are suÆientto determine that the data is likely to be ompressible.ISA extensions have been developed to eÆiently proess narrow width datainluding Intel's MMX [9℄ and Motorola's AltiVe [11℄. Compiler tehniques arealso being developed to exploit suh instrution sets [8℄. However, the instru-tions we require are quite di�erent from MMX instrutions beause we musthandle partially ompressible data strutures and we must also handle pointerdata.7 ConlusionsIn onlusion we have introdued a new lass of transformations that applydata ompression tehniques to ompat the sizes of dynamially alloated datastrutures. These transformations result in large spae savings and also result insigni�ant redutions in program exeution times and power dissipation due toimproved memory performane.An attrative property of these transformations is that they are appliableto partially ompressible data strutures. This is extremely important beauseaording to our experiments, while the data strutures in all of the benhmarkswe studied are very highly ompressible, they ontain small amounts of unom-pressible data. Even for programs with fully ompressible data strutures ourapproah has one advantage. The appliation of ompression transformations anbe driven by simple value pro�ling tehniques [4℄. There is no need for omplexompile-time analyses for identifying fully ompressible �elds in data strutures.Our approah is appliable to a more general lass of programs than exist-ing ompression tehniques: we an ompress pointers as well as non-pointerdata; and we an ompress partially ompressible data strutures. Finally wehave designed the DCX ISA extensions to enable eÆient manipulation of om-pressed data. The same task annot be arried using MMX type instrutions.Our main ontribution is that data ompression tehniques an now be used to
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improve performane of general purpose programs and therefore this work takesthe utility of ompression beyond the realm of multimedia appliations.Referenes1. D. Brooks, V. Tiwari, and D. Martonosi, \Watth: A Framework for Arhiteture-Level Power Analysis and Optimizations," 27th International Symposium on Com-puter Arhiteture (ISCA), pages 83{94, May 2000.2. D. Brooks and D. Martonosi, \Dynamially Exploiting Narrow Width Operandsto Improve Proessor Power and Performane," 5th International Symposium onHigh-Performane Computer Arhiteture (HPCA), pages 13{22, Jan. 1999.3. D. Burger and T.M. Austin, \The Simplesalar Tool Set, Version 2.0," ComputerArhiteture News, pages 13{25, June 1997.4. M. Burrows, U. Erlingson, S-T.A. Leung, M.T. Vandevoorde, C.A. Waldspurger,K. Walker, and W.E. Weihl, \EÆient and Flexible Value Sampling," The NinthInternational Conferene on Arhitetural Support for Programming Languages andOperating Systems (ASPLOS), pages 160{167, Cambridge, MA, November 2000.5. M. Carlisle, \Olden: Parallelizing Progrms with Dynami Data Strutures onDistributed-Memory Mahines," PhD Thesis, Prineton Univ., Dept. of Comp. Si-ene, June 1996.6. T.M. Chilimbi, M.D. Hill, and J.R. Larus, \Cahe-Consious Struture Layout,"ACM SIGPLAN Conferene on Programming Language Design and Implementation(PLDI), pages 1{12, Atlanta, Georgia, May 1999.7. J. Davidson and S. Jinturkar, \Memory aess oalesing : a tehnique for elimi-nating redundant memory aesses," ACM SIGPLAN Conferene on ProgrammingLanguage Design and Implementation (PLDI), pages 186{195, 1994.8. S. Larsen and S. Amarasinghe, \Exploiting Superword Level Parallelism with Multi-media Instrution Sets," ACM SIGPLAN Conf. on Programming Language Designand Implementation (PLDI), pages 145{156, Vanouver B.C., Canada, June 2000.9. A. Peleg and U. Weiser, MMX Tehnology Extension to Intel Arhiteture. 16(4):42-50, August 1996.10. M. Stephenson, J. Babb, and S. Amarasinghe, \Bitwidth Analysis with Appliationto Silion Compilation," ACM SIGPLAN Conf. on Programming Language Designand Implementation (PLDI), pages 108{120, Vanouver B.C., Canada, June 2000.11. J. Tyler, J. Lent, A. Mather, and H.V. Nguyen, \AltiVe(tm): Bringing VetorTehnology to the PowerPC(tm) Proessor Family," Phoenix, AZ, February 1999.12. Y. Zhang, J. Yang, and R. Gupta, \Frequent Value Loality and Value-CentriData Cahe Design," The Ninth International Conferene on Arhitetural Sup-port for Programming Languages and Operating Systems (ASPLOS), pages 150{159,Cambridge, MA, November 2000.13. J. Yang, Y. Zhang, and R. Gupta, \Frequent Value Compression in Data Cahes,"The 33nd Annual IEEE/ACM International Symposium on Miroarhiteture (MI-CRO), pages 258{265, Monterey, CA, Deember 2000.14. D.N. Truong, F. Bodin, and A. Sezne, \Improving Cahe Behavior of DynamiallyAlloated Data Strutures," International Conferene on Parallel Arhitetures andCompilation Tehniques (PACT), pages 322{329, Paris, Frane, 1998.15. B. Calder, C. Krintz, S. John, and T. Austin, \Cahe-Consious Data Plaement,"8th International Conf. on Arhitetural Support for Programming Languages andOperating Systems (ASPLOS), pages 139{149, San Jose, California, Otober 1998.


